Слуховая сенсорная система

Слуховая и вестибулярная сенсорные системы

Слуховая сенсорная система

Слуховой и вестибулярный рецепторные аппараты расположены во внутреннем ухе. Вестибулярный аппарат связан со статокинетическим раздражением и возбуждается при всяком изменении в положении головы, а, следовательно, и всего тела в пространстве. Он участвует в сохранении равновесия и в поддержании определенной позы тела.

Оба рецепторных аппарата имеют в филогенезе общее происхождение. В простейшем виде они представлены пузырьком, стенки которого выстланы мерцательным эпителием. Такой пузырек имеют некоторые кишечнополостные (медузы). Он наполнен жидкостью и содержит известковое образование – статолит.

При изменении положения тела последний перекатывается и раздражает окончания чувствительных нервов, подходящих к стенке пузырька, в результате чего организм получает ощущение своего положения в пространстве.

В процессе эволюции строение этого органа значительно усложняется, и он распадается на два отдела, из которых один сохраняет статическую функцию, а другой приобретает слуховую. Оба рецепторных аппарата иннервируются волокнами, идущими в составе преддверно-улиткового нерва (VIII).

Они возбуждаются механическими колебаниями: вестибулярный воспринимает сотрясения, связанные с изменениями положения тела; слуховой – воздушные колебания.

Слуховые рецепторы человека лежат в спиральном органе улитки; вестибулярные – в гребешках ампул полукружных каналов и чувствительных пятнах сферического и эллиптического мешочков. В то время как орган равновесия состоит только из структур, в которых располагаются рецепторные клетки, строение органа слуха сильно усложнено системой образований, проводящих звуковые волны к рецептору.

Слуховой орган человека состоит из трех частей:

1) улавливающего воздушные колебания наружного уха;
2) передающего звуковые волны среднего уха и
3) воспринимающего звук внутреннего уха.

В последнем, помимо слуховых рецепторов, помещаются рецепторы вестибулярной системы. Органы слуха и равновесия расположены в основном в толще пирамиды височной кости.

Наружное ухо (auris externa) произошло на месте выпячивания эктодермы I висцеральной (челюстной) дуги. Оно представлено ушной раковиной и наружным слуховым проходом.

Ушная раковина

Ушная раковина (auricula) животных обладает свойством настораживаться и служит для улавливания звуков. У человека вследствие слабого развития ушных мышц она сохраняет незначительную подвижность.

Основу ушной раковины составляет эластический хрящ сложной формы. Внизу он дополняется кожной складкой – мочкой, которая заполнена жировой тканью. Свободный наружный край раковины завернут внутрь в форме завитка, а с ее дна параллельно ему поднимается возвышение – противозавиток.

Медиальнее последнего располагается полость раковины, в глубине которой находится отверстие наружного слухового прохода. Спереди проход ограничивает хорошо заметный бугорок – козелок, сзади – противокозелок. Форма и величина ушной раковины индивидуально изменчивы. Иногда верхнезадняя часть завитка вытягивается в бугорок.

Он хорошо заметен у человеческого плода и низших обезьян.

Наружный слуховой проход

Наружный слуховой проход (meatus acusticus externus) имеет длину около 24 мм и оканчивается барабанной перепонкой.

Его внешняя хрящевая треть представляет собой продолжение хряща раковины, остальные две трети, костные, располагаются в пирамиде височной кости.

Слуховой проход несколько изогнут, он выстлан кожей с тонкими волосками и видоизмененными потовыми железками, выделяющими ушную серу. Как те, так и другие защищают барабанную перепонку от неблагоприятных воздействий внешней среды, например от пыли.

Барабанная перепонка

Барабанная перепонка (membrana tympani) отделяет наружное ухо от среднего. Ее основу составляют коллагеновые волокна, снаружи она покрыта эпидермисом, а внутри – слизистой оболочкой. Перепонка настолько тонка, что сквозь нее просвечивает молоточек среднего уха.

Среднее ухо (auris media) состоит из барабанной полости, слуховых косточек и слуховой трубы.

Барабанная полость

Барабанная полость (cavitas tympanica) развивается из I висцеральной щели. Полость заполнена воздухом, попадающим сюда из носоглотки через слуховую трубу, отверстие которой находится на передней стенке барабанной полости.

На ее задней стенке открываются ячейки сосцевидного отростка, также наполненные воздухом, а на медиальной помещаются окно преддверия и окно улитки, ведущие во внутреннее ухо.

Окно улитки затянуто вторичной барабанной перепонкой.

Слуховые косточки

Внутри полости среднего уха расположены слуховые косточки (рис. 3.65): молоточек и наковальня – производные I висцеральной (челюстной) дуги – и стремя, развившееся из II висцеральной (подъязычной) дуги.

Молоточек сращен с барабанной перепонкой своей рукояткой, втягивающей ее центр внутрь, головка молоточка соединяется суставом с телом наковальни, длинный отросток которой, в свою очередь, сочленяется с головкой стремени.

Основание стремени прилежит к мембране, закрывающей окно преддверия. Таким образом, все три косточки составляют подвижную цепь, соединяющую барабанную перепонку с внутренним ухом.

Благодаря этому колебания воздуха в виде звуковых волн, воздействующие на барабанную перепонку, передаются к рецепторам внутреннего уха. При этом барабанная перепонка, воспринимающая колебания, имеет значительно большую площадь, чем окно преддверия, в которое входит головка стремени.

Таким образом, можно считать, что в системе косточек среднего уха происходит концентрация стимула.

Слуховая труба

Слуховая труба (tuba auditiva) представляет собой длинный (3,5 см) и узкий (2 мм) канал, костный со стороны уха, где он проходит в толще пирамиды, и хрящевой на остальной, большей части своего протяжения. С нижневентральной стороны хрящ дополняется фиброзной перепонкой, к которой прикрепляются мышцы мягкого неба.

Труба очень важна при выравнивании давления воздуха на барабанную перепонку. Отверстие трубы в глотке обычно находится в спавшемся состоянии, и проход воздуха в барабанную полость осуществляется при глотании и зевании, когда сокращающиеся мышцы мягкого неба оттягивают фиброзную часть стенки трубы, вследствие чего открывается ее просвет.

Слизистая трубы продолжается на стенки барабанной полости и ячейки сосцевидного отростка.

Внутреннее ухо (auris interna), или лабиринт, имеет наиболее сложное строение.

Сложная система перепончатых трубок, заполненных эндолимфой, образует перепончатый лабиринт. Он как бы вставлен в костный лабиринт, который повторяет форму перепончатого. В некоторых местах перепончатый лабиринт прикреплен к надкостнице костного лабиринта.

Слуховая и вестибулярная сенсорные системы связаны друг с другом в одно целое и в начале проводникового отдела – в преддверно-улитковом нерве.

Проводниковый отдел слухового анализатора начинается чувствительными нейронами спирального ганглия (см. Атл.). Последний расположен в стержне костной улитки в месте отхождения от него костной спиральной пластинки.

Дендриты клеток спирального узла проходят по канальцам костной спиральной пластинки к рецепторам спирального органа, а аксоны по продольным каналам стержня выходят во внутренний слуховой проход, где они объединяются с волокнами нерва преддверия в общий корешок VIII нерва.

Последний входит в мозг между нижними ножками мозжечка и мостом, его слуховые волокна направляются в покрышку моста к дорсальному и вентральному улитковым (кохлеарным) ядрам. Волокна от различных участков улитки проецируются упорядоченно на разные нейроны кохлеарных ядер.

Часть волокон подходит к ядрам оливы своей и противоположной стороны, которые являются центрами бинауральной локализации звуков. От оливы отдельные волокна по оливо-кохлеарному пучку направляются обратно к улитке и осуществляют центробежный контроль волосковых клеток.

Большая часть волокон клеток этих ядер переходит на противоположную сторону: от дорсального ядра по дну четвертого желудочка в составе мозговых полосок, от вентрального – в составе трапециевидного тела. На противоположной стороне волокна образуют латеральную петлю.

Часть ее волокон оканчивается на клетках нижнего двухолмия, откуда по тектоспинальному тракту идут импульсы, вызывающие двигательные реакции в ответ на звуковые раздражения. Другие волокна латеральной петли в составе ручки нижнего двухолмия подходят к медиальному коленчатому телу.

Отростки клеток последнего образуют слуховую лучистость, оканчивающуюся в коре верхней височной извилины, в глубине боковой борозды (полях 41 и 42).

В нижних бугорках четверохолмия, в медиальном коленчатом теле и в слуховой коре прослеживается четкая тонотопическая проекция различных частей улитки на определенные группы нейронов. Это позволяет дифференцированно различать звуки разной частоты.

В вестибулярной системе (см. Атл.; рис. 3.69) проводниковый отдел начинается чувствительными нейронами преддверного узла, лежащего на дне внутреннего слухового прохода.

Рис. 3.69.

Рис. 3.69. Связи вестибулярных ядер:1 – вестибулярно-мозжечковая система;2 – к мозжечку;3 – верхнее,4 – латеральное,5 – медиальное и6 – нижнее вестибулярные ядра;7 – от вестибулярных рецепторов;8 – латеральный вестибулоспинальный тракт;9 – к мотонейронам конечностей;10 – к мотонейронам шеи и туловища;11 – медиальный вестибулоспинальный тракт;12 – медиальный продольный пучок;

13 – к мотонейронам наружных глазных мышц (III, IV, VI); 14 – вестибулоокулярна

Дендриты этих нейронов проникают к вестибулярным рецепторам в пятнах и гребешках, а аксоны образуют преддверный корешок, который соединяется с улитковым корешком, образуя преддверно-улитковый нерв (VIII пара), идущий по внутреннему слуховому проходу в полость черепа, в продолговатый мозг. Здесь большая часть волокон заканчивается на нейронах ядер преддверия в ромбовидной ямке.

Волокна клеток этих ядер передают импульсы по трем путям. Первый из них направляется к мотонейронам спинного мозга в составе вестибуло-спинального пути. Эти волокна образуют две ветви – медиальную и латеральную. На нейроны вестибулярных ядер, дающие начало медиальной ветви, проецируются волокна, идущие от гребешков полукружных протоков.

Медиальная ветвь входит в медиальный продольный пучок и в его составе подходит к мотонейронам, управляющим движениями туловища и шеи. При участии этого пути организуются рефлексы поддержания головы и шеи в нормальном положении при поворотах туловища. По латеральной ветви волокна следуют к мотонейронам, управляющим движениями мышц конечностей при поддержании равновесия.

Нейроны, аксоны которых собираются в латеральный тракт, получают афферентацию в основном от макул.

Второй путь передачи импульсов от вестибулярных ядер связан с координированным движением глаз (рис. 3.70). Это необходимо для сохранения стабильного изображения на сетчатке при перемещениях тела.

Волокна от вестибулярных ядер следуют к ядрам двигательных нервов глазных мышц (глазодвигательный, блоковый и отводящий).

Этот путь дополняется связями с ретикулярной формацией мозгового ствола, с чем связаны вегетативные реакции, возникающие при сильном раздражении вестибулярных рецепторов (тошнота, потливость и т.д.).

Рис. 3.70.

Рис. 3.70. Проводящие пути, обеспечивающие произвольные и рефлекторные содружественные движения глаз:

1– отводящий и 2 – глазодвигательный нервы;3 – верхние и 4 – нижние бугорки четверохолмия;5 – латеральное коленчатое тело;6 – медиальный продольный пучок;7 – верхнее, 8 – латеральное, 9 – медиальное и 10 – нижнее вестибулярные ядра;11 – латеральный вестибулоспинальный тракт;12 – от шейного отдела спинного мозга;13 – поле моста, обеспечивающее горизонтальное движение глаз;14 – вегетативные ядра глазодвигательного нерва;15 – поле крыши, обеспечивающее вертикальное движение глаз;16 – пути произвольных и 17 – рефлекторных движений глаз.

Римскими цифрами обозначены ядра черепно-мозговых нервов

Третий путь, по которому идут волокна от вестибулярных ядер – через нижние ножки мозжечка к нейронам ядра шатра и шаровидному ядру, а также к клочку мозжечка. Отростки нейронов ядер мозжечка и коры червя возвращаются к вестибулярным ядрам. Эти пути связаны с поддержанием равновесия.

Небольшое число волокон направляется от вестибулярных ядер к заднему вентральному ядру таламуса, а оттуда – в часть соматосенсорной коры, получающей импульсы от лица и верхних конечностей, а также в поле 21 височной области.

Вероятно, эта зона коры имеет отношение к осознанному восприятию равновесия и движения, определяемому вестибулярными входами.

Кроме того, часть волокон уходит в лобную долю, где расположены нейроны, управляющие произвольными движениями глаз.

Источник: //doctor-v.ru/med/sluxovaya-i-vestibulyarnaya-sensornye-sistemy/

Сенсорная система слуха

Слуховая сенсорная система

Слух — вид чувствительности, позволяющий воспринимать частоту и силу (амплитуду) звуковых колебаний, а также направление, в котором находится источник звука; обеспечивается слуховой сенсорной системой.

Звук представляет собой колебания давления, волнообразно распространяющиеся в упругой среде (воздухе, воде).

Ухо человека может воспринимать звуковые колебания с частотой от 12-14 до 20 000 Гц (у детей — до 22 000 Гц, у пожилых людей — до 15 000 Гц). 1 Гц (герц) — единица измерения частоты, равная одному колебанию за одну секунду.

Громкость звука зависит от амплитуды колебаний давления.

Высота звука определяется частотой колебаний давления: высокочастотные изменения давления воспринимаются как высокий звук (свист, писк), низкочастотные колебания — как низкий звук (гул, гудение).

Значение слуха:

■ к слуховой информации относится до 9% информации, получаемой человеком из внешнего мира;

■ слух позволяет ориентироваться в окружающей обстановке;

■ с помощью слуха возможно общение между людьми;

■ у человека слуховая сенсорная система является частью более общей системы, обеспечивающей способность к членораздельной речи; поэтому ребенок, потерявший слух в раннем детстве, утрачивает и речь, несмотря на то, что его речевой аппарат не нарушен.

Состав слуховой сенсорной системы:

■ периферический отдел (орган слуха) представлен, парными наружным ухом, средним ухом, внутренним ухом со слуховыми рецепторами и вспомогательными образованиями, входящими в состав наружного и среднего уха;

■ проводниковый отдел образован преддверно-улитковыми (слуховыми) нервами (это VIII пара черепно-мозговых нервов), передающими нервные импульсы в головной мозг;

■центральный отдел представлен слуховыми зонами в височных долях коры больших полушарий головного мозга.

Строение наружного, среднего и внутреннего уха

Наружное ухо — звукоулавливающая часть слуховой сенсорной системы; включает ушную раковину, наружный слуховой проход и барабанную перепонку.

Ушная раковина состоит из хряща, покрытого кожей; выполняет функцию звукоулавливающей антенны. У человека ушные мышцы развиты слабо, поэтому ушная раковина практически неподвижна.

Наружный слуховой проход представляет собой костнохрящевой канал длиной до 3 см, покрытый многослойным плоским эпителием; служит для проведения звуковых колебаний к барабанной перепонке.

Эпителий содержит видоизмененные потовые железы, вырабатывающие ушную серу — вязкое вещество, обладающее бактерицидными свойствами и задерживающее пыль и бактерии, попадающие в наружный слуховой проход.

Барабанная перепонка — тонкая эластичная мембрана, отделяющая наружное ухо от среднего и имеющая вид тонкого конуса, вершина которого направлена в полость среднего уха; служит для восприятия звуковых колебаний, пришедших по наружному слуховому проходу, преобразования их в механические колебания и передачи их в среднее ухо.

Среднее ухо — звукопроводящая часть слуховой сенсорной системы; представлено барабанной полостью, тремя слуховыми косточками и слуховой (евстахиевой) трубой.

Барабанная полость представляет собой полую камеру в височной кости объемом около 1 см3, находящуюся между наружным и внутренним ухом, выстланную слизистой оболочкой, заполненную воздухом и через слуховую трубу соединяющуюся с носоглоткой. Барабанная полость заканчивается овальным и круглым окнами, отделяющими среднее ухо от внутреннего.

Слуховые косточкимолоточек, наковальня, стремечко -имеют очень маленькие размеры (длина стремечка — 3 мм), расположены в барабанной полости и служат для передачи колебаний от барабанной перепонки к мембране овального окна, а также для усиления (в 20-50 раз) слабых колебаний и ослабления чрезмерно сильных колебаний. Слуховые косточки соединяются друг с другом суставами, образуя цепочку — рычажно-шарнирную систему, которая может усиливать колебания. При этом рукоятка молоточка вплетена в барабанную перепонку, его головка соединена с наковальней, которая, в свою очередь, шарнирно связана со стремечком, а стремечко прикреплено к мембране овального окна. Ослабление очень сильных колебаний происходит рефлек-торно (без участия сознания) за счет сокращения мышц, ограничивающих подвижность косточек.

Слуховая (или евстахиева) труба — канал, соединяющий барабанную полость с носоглоткой и служащий для поддержания одинакового давления в барабанной полости и в носоглотке (выравнивание давлений происходит во время глотания и зевания); это позволяет создать наилучшие условия для колебаний барабанной перепонки и, тем самым, для наилучшего восприятия звука.

Овальное и круглое окна — затянутые эластичными мембранами отверстия в барабанной полости, соединяющие среднее ухо с внутренним. В мембранную перепонку овального окна (площадь которой примерно в 20 раз меньше площади барабанной перепонки) упирается плоская часть стремечка. Круглое окно снижает давление на овальное окно.

Внутреннее ухо — звуковоспринимающая часть слуховой сенсорной системы; находится в височной кости и состоит из системы полостей и каналов, образующих костный лабиринт и расположенный в нем перепончатый лабиринт. Пространство между этими лабиринтами заполнено жидкой средой — перилимфой, внутри перепончатого лабиринта находится эндолимфа.

Костный лабиринт — система полостей и каналов внутреннего уха, в которой выделяют три части: улитку (расположена спереди), преддверие (в центре) и три полукружных канала; улитка относится к органу слуха, а преддверие с полукружными каналами -к вестибулярному аппарату.

Перилимфа — вязкая жидкость, близкая по составу к плазме крови.

Эндолимфа — жидкость, сходная по своем составу с внутриклеточной жидкостью; отличается высоким содержанием ионов калия и натрия.

Улитка — спирально закрученный в 2,5-2,75 оборота, постепенно суживающийся к центру спирали костный канал длиной около 35 мм. Состоит из трех параллельных, свернутых вместе каналов, называемых верхней (вестибулярной), средней и нижней (барабанной) лестницами. Средняя лестница заполнена эндолимфой, две другие — перилимфой.

Каналы улитки отделены друг от друга двумя мембранами (перепонками): верхняя лестница отделена от средней вестибулярной мембраной, а средняя от нижней — основной мембраной.

Основная мембрана состоит из соединительной ткани; у нее закреплен только один край, а второй — свободен и образует вырост — покровную мембрану, которая может скользить по расположенным под ней структурам.

На продольном утолщении основной мембраны расположен кортиев орган.

Кортнев орган — звуковоспринимающий аппарат, в состав которого входит около 24 000 тонких волокон различной длины, расположенных на основной мембране поперек хода улитки, причем в начале мембраны (у вершины улитки) находятся самые длинные волокна, а в ее конце — самые короткие.

На каждом из этих волокон в пять рядов расположены по 30-60 высокочувствительных волосковых слуховых рецепторных клеток, омываемых эндолимфой.

От фиксированных концов рецепторных клеток отходят волокна слухового нерва, а свободные концы этих клеток могут соприкасаться с нависающей над ними покровной мембраной.

Механизм восприятия звука

Механизм восприятия звука:

■ звуковые волны улавливаются ушной раковиной, проходят через наружный слуховой проход и вызывают колебания барабанной перепонки;

■ колебания барабанной перепонки передаются слуховым косточкам;

■ слуховые косточки проводят и усиливают звук;

■ колебания стремечка вызывают колебание мембраны овального окна;

■ колебания мембраны овального окна инициируют колебания перилимфы и эндолимфы;

■ колебания эндолимфы вызывают резонансные колебания волокон кортиева органа той или иной длины; причем звуки высоких тонов вызывают колебания коротких волокон, а звуки низких тонов — колебания длинных волокон; тем самым осуществляется первый этап частотного анализа звука;

■ при этом находящиеся на колеблющихся волокнах волоско-вые рецепторные клетки будут периодически соприкасаться с покровной мембраной и изменять свою форму, что приводит к возникновению в них нервных импульсов;

■ по волокнам преддверно-улиткового (слухового) нерва импульсы передаются сначала в продолговатый мозг, затем в подкорковые центры слуха (нижние бугры четверохолмия среднего мозга) и, наконец, в кору больших полушарий головного мозга;

■ в слуховых зонах височных долей коры больших полушарий происходит распознавание звуков (их характера, высоты и силы) и формируются соответствующие слуховые ощущения.

Бинауральный слух. Адаптация

Бинауральный слух — восприятие звука двумя ушами, позволяющее с высокой точностью определять направление на источник звука; характерно для человека и высших животных.

Объяснение бинаурального эффекта: звуковые колебания, идущие сбоку, во-первых, доходят до одного уха чуть раньше, чем до другого, и, во-вторых, воспринимаются ухом, более близким к источнику звука, как более громкие.

Вследствие этого время поступления в центральную нервную систему от правого и левого уха, а также интенсивности соответствующих нервных импульсов будут различны, что и дает возможность с высокой точностью определить направление на источник звука.

■ Если у человека одно ухо не слышит, то он может определить направление звука поворотом головы до тех пор, пока звук не окажется наиболее четко различим здоровым ухом.

Адаптация — снижение возбудимости слуховых волосковых рецепторных клеток и слуховых нервных узлов при длительном действии сильных звуков и возрастание возбудимости этих клеток и узлов при длительном пребывании в тишине.

Гигиена слуха

Гигиена слуха — комплекс правил и мероприятий, направленных на нормальное функционирование слуховой сенсорной системы. В частности:

■ при скоплении в наружном слуховом проходе грязи и ушной серы, вызывающих раздражение и зуд и ухудшающих слышимость, нельзя извлекать их острыми предметами (карандашом, спичкой, шпилькой и т.п.), поскольку это может привести к повреждению или разрыву барабанной перепонки;

■ чтобы избежать накопления ушной серы нужно ежедневно мыть уши теплой водой с помощью ватного тампона;

■ необходимо беречь уши от переохлаждения в сырую, холодную и ветреную погоду;

■ следует избегать длительного воздействия сильного шума, так как он приводят к потере эластичности барабанной перепонки и снижению остроты слуха; кроме того, шум нарушает нормальную жизнедеятельность человека, способствует развитию бессонницы, быстрому наступлению утомления; для ослабления вредного воздействия шума следует применять индивидуальные противошумные наушники, беруши, специальную облицовку помещений, поглощающую звук на производстве и т.д.;

■ при сильных, резких звуках (при взрывах, выстрелах и т.п.) необходимо открывать рот для уравновешивания наружного давления и давления в среднем ухе, так как в противном случае сильная звуковая волна может разорвать барабанную перепонку;

■ следует защищать уши от воздействия ультра- и инфразвуков;

■ необходимо полностью излечивать инфекционные заболевания (ангину, грипп, корь и др.), так как их возбудители из носоглотки вместе со слизью проникают через слуховую трубу в барабанную полость и могут вызвать воспаление среднего уха (отит);

■ при болях в ухе следует немедленно обратиться к врачу;

■ люди, страдающие значительным ослаблением слуха или глухотой, должны использовать слуховые аппараты, усиливающие звук.

Биология человека

Источник: //esculappro.ru/sensornaya-sistema-sluha.html

Сенсорные системы

Слуховая сенсорная система

Оглавление

Сенсорные системы.. 3

Общая физиология сенсорных систем. 3

Методы исследования сенсорных систем. 3

Общие принципы строения сенсорных систем. 3

Основные функции сенсорной системы.. 3

Механизмы переработки информации в сенсорной системе. 3

Адаптация сенсорной системы.. 3

Взаимодействие сенсорных систем. 3

Слуховая система. 3

Структура и функции наружного и среднего уха. 3

Структура и функции внутреннего уха. 3

Передача звуковых колебаний по каналам улитки. 3

Расположение и структура рецепторных клеток спирального органа. 3

Механизм восприятия и передачи звуковой информации. 3

Электрические явления в улитке. 3

Иннервация волосковых клеток спирального органа. 3

Электрическая активность путей и центров слуховой системы.. 3

Слуховые функции. 3

Анализ частоты звука (высоты тона)3

Анализ интенсивности звука. 3

Слуховые ощущения. Тональность (частота) звука. 3

Слуховая чувствительность. 3

Бинауральный слух. 3

Общая физиология сенсорных систем

Сенсорной системой (анализатором, по И.П.

Павлову) называют часть нервной системы, состоящую из воспринимающих элементов – сенсорных рецепторов, получающих стимулы из внешней или внутренней среды, нервных путей, передающих информацию от рецепторов в мозг, и тех частей мозга, которые перерабатывают эту информацию. Таким образом, сенсорная система вводит информацию в мозг и анализирует ее. Работа любой сенсорной системы начинается с восприятия рецепторами внешней для мозга физической или химической энергии, трансформации ее в нервные сигналы и передачи их в мозг через цепи нейронов. Процесс передачи сенсорных сигналов сопровождается многократным их преобразованием и перекодированием и завершается высшим анализом и синтезом (опознанием образа), после чего формируется ответная реакция организма.

Информация, поступающая в мозг, необходима для простых и сложных рефлекторных актов вплоть до психической деятельности человека. И.М.

Сеченов писал, что «психический акт не может явиться в сознании без внешнего чувственного возбуждения». Переработка сенсорной информации может сопровождаться, но может и не сопровождаться осознанием стимула.

Если осознание происходит, говорят об ощущении. Понимание ощущения приводит к восприятию.

И.П. Павлов считал анализатором совокупность рецепторов (периферический отдел анализатора), путей проведения возбуждения (проводниковый отдел), а также нейронов, анализирующих раздражитель в коре мозга (центральный отдел анализатора).

Методы исследования сенсорных систем

Для изучения сенсорных систем используют электрофизиологические, нейрохимические, поведенческие и морфологические исследования на животных, психофизиологический анализ восприятия у здорового и больного человека, методы картирования его мозга. Сенсорные функции также моделируют и протезируют.

Моделирование сенсорных функций позволяет изучать на биофизических или компьютерных моделях такие функции и свойства сенсорных систем, которые пока недоступны для экспериментальных методов.

Протезирование сенсорных функций практически проверяет истинность наших знаний о них.

Примером могут быть электро-фосфеновые зрительные протезы, которые восстанавливают зрительное восприятие у слепых людей разными сочетаниями точечных электрических раздражений зрительной области коры большого мозга.

Общие принципы строения сенсорных систем

Основными общими принципами построения сенсорных систем высших позвоночных животных и человека являются следующие:

1) многослойность, т.е. наличие нескольких слоев нервных клеток, первый из которых связан с рецепторами, а последний – с нейронами моторных областей коры большого мозга.

Это свойство дает возможность специализировать нейронные слои на переработке разных видов сенсорной информации, что позволяет организму быстро реагировать на простые сигналы, анализируемые уже на первых уровнях сенсорной системы.

Создаются также условия для избирательного регулирования свойств нейронных слоев путем восходящих влияний из других отделов мозга;

2) многоканальностьсенсорной системы, т.е. наличие в каждом слое множества (от десятков тысяч до миллионов) нервных клеток, связанных с множеством клеток следующего слоя. Наличие множества таких параллельных каналов обработки и передачи информации обеспечивает сенсорной системе точность и детальность анализа сигналов и большую надежность;

3) разное число элементов в соседних слоях, что формирует «сенсорные воронки». Так, в сетчатке глаза человека насчитывается 130 млн. фоторецепторов, а в слое ганглиозных клеток сетчатки нейронов в 100 раз меньше («суживающаяся воронка»).

На следующих уровнях зрительной системы формируется «расширяющаяся воронка»: число нейронов в первичной проекционной области зрительной области коры в тысячи раз больше, чем ганглиозных клеток сетчатки. В слуховой и в ряде других сенсорных систем от рецепторов к коре большого мозга идет «расширяющаяся воронка».

Физиологический смысл «суживающейся воронки» заключается в уменьшении избыточности информации, а «расширяющейся» – в обеспечении дробного и сложного анализа разных признаков сигнала; дифференциация сенсорной системы по вертикали и по горизонтали.

Дифференциация по вертикали заключается в образовании отделов, каждый из которых состоит из нескольких нейронных слоев. Таким образом, отдел представляет собой более крупное морфофункциональное образование, чем слой нейронов.

Каждый отдел (например, обонятельные луковицы, кохлеарные ядра слуховой системы или коленчатые тела) осуществляет определенную функцию. Дифференциация по горизонтали заключается в различных свойствах рецепторов, нейронов и связей между ними в пределах каждого из слоев.

Так, в зрении работают два параллельных нейронных канала, идущих от фоторецепторов к коре большого мозга и по-разному перерабатывающих информацию, поступающую от центра и от периферии сетчатки глаза.

Основные функции сенсорной системы

Сенсорная система выполняет следующие основные функции, или операции, с сигналами: 1) обнаружение; 2) различение; 3) передачу и преобразование; 4) кодирование; 5) детектирование признаков; 6) опознание образов.

Обнаружение и первичное различение сигналов обеспечивается рецепторами, а детектирование и опознание сигналов – нейронами коры больших полушарий.

Передачу, преобразование и кодирование сигналов осуществляют нейроны всех слоев сенсорных систем.

Обнаружение сигналов. Оно начинается в рецепторе – специализированной клетке, эволюционно приспособленной к восприятию раздражителя определенной модальности из внешней или внутренней среды и преобразованию его из физической или химической формы в форму нервного возбуждения.

Классификация рецепторов. В практическом отношении наиболее важное значение имеет психофизиологическая классификация рецепторов по характеру ощущений, возникающих при их раздражении.

Согласно этой классификации, у человека различают зрительные, слуховые, обонятельные, вкусовые, осязательные рецепторы, термо-, проприо – и вестибулорецепторы (рецепторы положения тела и его частей в пространстве) и рецепторы боли.

Существуют рецепторы внешние (экстерорецепторы) и внутренние (интерорецепторы). К экстерорецепторам относятся слуховые, зрительные, обонятельные, вкусовые, осязательные. К интерорецепторам относятся вестибуло – и проприорецепторы (рецепторы опорно-двигательного аппарата), а также висцерорецепторы (сигнализирующие о состоянии внутренних органов).

По характеру контакта со средой рецепторы делятся на дистантные, получающие информацию на расстоянии от источника раздражения (зрительные, слуховые и обонятельные), и контактные – возбуждающиеся при непосредственном соприкосновении с раздражителем (вкусовые, тактильные).

В зависимости от природы раздражителя, на который они оптимально настроены, рецепторы могут быть разделены на фоторецепторы, механорецепторы, к которым относятся слуховые, вестибулярные рецепторы, и тактильные рецепторы кожи, рецепторы опорно-двигательного аппарата, барорецепторы сердечно-сосудистой системы; хеморецепторы, включающие рецепторы вкуса и обоняния, сосудистые и тканевые рецепторы; терморецепторы (кожи и внутренних органов, а также центральные термочувствительные нейроны); болевые (ноцицептивные) рецепторы.

Все рецепторы делятся на первично-чувствующие и вторично-чувствующие. К первым относятся рецепторы обоняния, тактильные и проприорецепторы. Они различаются тем, что преобразование энергии раздражения в энергию нервного импульса происходит у них в первом нейроне сенсорной системы.

К вторично-чувствующим относятся рецепторы вкуса, зрения, слуха, вестибулярного аппарата. У них между раздражителем и первым нейроном находится специализированная рецепторная клетка, не генерирующая импульсы.

Таким образом, первый нейрон возбуждается не непосредственно, а через рецепторную (не нервную) клетку.

Общие механизмы возбуждения рецепторов. При действии стимула на рецепторную клетку происходит преобразование энергии внешнего раздражения в рецепторный сигнал, или трансдукция сенсорного сигнала. Этот процесс включает в себятри основных этапа:

1) взаимодействие стимула, т.е. молекулы пахучего или вкусового вещества (обоняние, вкус), кванта света (зрение) или механической силы (слух, осязание) с рецепторной белковой молекулой, которая находится в составе клеточной мембраны рецепторной клетки;

Источник: //MirZnanii.com/a/9506/slukhovaya-sensornaya-sistema

Строение слуховой сенсорной системы человека: значение и особенности

Слуховая сенсорная система

Слуховая сенсорная система имеет огромное значение для человека.

Физиология предусматривает наличие системы, которая включает зрительное и слуховое восприятие информации, на основе чего формируются образы и происходит межличностное общение.

Звуковые сигналы проходят несколько этапов обработки, прежде чем информация примет осознанную форму. Каждый из них необходимо рассмотреть более подробно.

Воспринимающая система

Слуховая сенсорная система и её физиология имеют довольно сложную структуру. У человека она представлена тремя основными частями:

  • воспринимающая;
  • проводящая;
  • центральная.

Первый контакт происходит в воспринимающей системе человека. Она представлена непосредственно таким органом слуха, как ухо. Физиология подразумевает выделение трех отделов уха, каждый из которых выполняет набор задач, по итогу которых происходит кодировка и распознание звуковых импульсов.

Ухо человека имеет три составляющих части:

  • наружную;
  • среднюю;
  • внутреннюю.

Физиология слуховой системы человека заключается в том, что внешний раздражитель, то есть звук, проходит длинную цепочку передачи сигнала в мозг человека. В воспринимающем отделе аудиоинформация начинает свое путешествие целым рядом этапов. Вначале звуковые волны улавливаются наружным ухом. Ушная раковина захватывает звук, и позволяет определить направление расположения его источника.

Далее сигнал поступает через наружный слуховой проход к барабанной перепонке, вызывая её колебание и приводя в движение слуховые косточки среднего уха. Всего их три: молоточек, наковальня и стремечко. Молоточек соединяется с барабанной перепонкой и наковальней, а стремечко – наковальней и улиткой внутреннего уха.

Внутреннее ухо представлено лабиринтом. Здесь располагается улитка и вестибулярный аппарат, отвечающий за равновесие и ориентацию человека в пространстве. Непосредственно во внутреннем ухе человека происходит кодировка сигнала. Звуковые колебания улавливаются волосковыми рецепторами и преобразуются в нервные импульсы. Здесь функции воспринимающей системы считаются завершенными.

Если на этом этапе возникают проблемы, говорят о наличии функциональной (кондуктивной) тугоухости. Дисфункция или повреждение одного из элементов звуковоспринимающей системы не позволяет аудиоинформации пройти полноценный путь передачи.

Снижение чувствительности барабанной перепонки, повреждение косточек, избыток экссудата или наличие воспалительного процесса – все эти факторы ухудшают слух, влияют на увеличение порога чувствительности и громкости, способствуют искажению информации и затрудняют её распознание.

Проводящая и центральная системы

Предварительно обработанная информация, а именно преобразованные в нервные импульсы звуковые волны, продолжают свой путь в проводящей системе человека. Ее физиология подразумевает наличие нерва, который является проводником между двумя крайними точками: воспринимающим и центральным отделом.

Слуховой нерв имеет несколько ответвлений. Одна его часть соединяется с вестибулярным аппаратом. Благодаря этому сигнал из полукружных каналов позволяет проинформировать человека о его положении в пространстве. Этот отросток соединяется со слуховым нервом.

Слуховой отросток контактирует с улиткой, в которой происходит преображение звуковых волн в нейронные связи. В итоге полученный импульс проходит по стволу преддверно-улиткового нерва и поступает в центральную слуховую систему, то есть головной мозг.

Центральная часть представлена стволом головного мозга и слуховой зоной коры больших полушарий. Основной центр приема импульсов располагается в височной области. Подобная физиология обеспечивает прием, обработку и расшифровку аудиоинформации.

При нарушении работы рецепторов внутреннего уха, проводниковой и центральной систем у человека диагностируется нейросенсорная (сенсоневральная) тугоухость. При серьезных патологиях может наблюдаться полная глухота.

Если с кондуктивной формой можно справиться и откорректировать работу поврежденных отделов уха посредством операции, медикаментов или протезирования, то здесь могут быть безвыходные ситуации. Частично возместить потерю слуха можно посредством аппаратного протезирования и вживления имплантатов.

В частности, достаточно эффективным является кохлеарное вживление электродов во внутреннее ухо.

Значение и особенности слухового анализатора

Слуховая система имеет огромное значение в познании мира и ведении жизнедеятельности человека. Она позволяет контактировать с внешней средой еще с момента развития плода в утробе матери. Чтобы лучше понимать о чем идет речь, следует подробно рассмотреть возрастные особенности слуховой сенсорной системы.

Физиология человека – это сложное понятие. Если рассматривать непосредственно органы, связанные со слухом, они проходят долгий процесс формирования даже после появления ребенка на свет.

В последнем триместре малыш может реагировать на голоса родных и приятные звуки, находясь в утробе матери, но после рождения происходят изменения в слуховом анализаторе, который приспосабливается под новые условия жизни.

Первая особенность – это физиология воспринимающего анализатора. У младенцев ухо имеет минимум хрящевой ткани, а барабанная перепонка отличается большей толщиной и горизонтальным расположением. Кроме того, среднее ухо имеет связь с мозговой оболочкой, так как стенки полости еще не заросли окончательно и имеют небольшую толщину.

А вот слуховые косточки мало чем отличаются от взрослых, но они могут быть частично заблокированы в первый месяц жизни ребенка. Это связано с тем, что евстахиева труба у малышей короткая и широкая, что открывает доступ в среднее ухо. После рождения в него может попасть околоплодная жидкость, но со временем эта проблема самоустранится.

В первый год происходит становление слухового анализатора. Вначале новорожденный реагирует рефлекторно на громкие звуки, но уже к полугоду он умеет их различать и определять источник шума. Далее начинает формироваться распознавание речевой составляющей, что подготавливает ребенка к развитию умения говорить и повторять за взрослыми.

Окончательное становление всех трех систем слухового анализатора, в частности, центрального, происходит к 12-13 годам.

По мере взросления человека качество слуха вначале улучшается, а затем начинает идти на спад. Особенно четко это заметно при сравнении чувствительности восприятия разных частот в том или ином возрасте.

Изначально порог восприятия может достигать более 30 кГц, пик приходится на 15-20 лет. После чувствительность становится меньшей и уже к 30 годам человек зачастую не различает частоты в 15-17 кГц. В пожилом возрасте высокие частоты становятся недоступными для восприятия.

Если же ухудшение слуха происходит раньше, стоит провериться на наличие тугоухости.

Также по мере старения и износа анализаторов, ухудшается восприятие определенной громкости. К 60 годам у многих людей порог остроты слуха смещается до 50-65 Дб. Это связано с наличием патологий, перенесенными ранее болезнями, естественным износом организма.

Барабанная перепонка теряет свою эластичность, слуховые косточки становятся менее подвижными, а волосковые рецепторы со временем деформируются и отмирают.

Чтобы замедлить эти процессы нужно на протяжении всей жизни следить за своим здоровьем и выполнять рекомендации относительно профилактики слуха.

Слуховые анализаторы представляют собой сложную систему. Природой была продумана каждая мелочь, чтобы увязать все элементы в цельный комплекс, позволяющий воспринимать и распознавать самые разнообразные аудиосигналы из внешнего мира, а в последующем – воспроизводить некоторые из них.

Источник: //BezOtita.ru/polezno-znat/sluhovaya-sensornaya-sistema-cheloveka.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.